تاثیر تمرین مقاومتی روی سطح ناپایدار همراه با محدودیت جریان خون بر الگوهای زمانی و تعداد سینرژی عضلانی سالمندان با سابقه افتادن در حین راه رفتن: مطالعه مقدماتی

نویسندگان

1 دانشگاه شهید بهشتی

2 دانشگاه سمنان

3 دانشگاه خوارزمی

چکیده

مقدمه و هدف: با افزایش سن، سازگاری­های عصبی - عضلانی کاهش و میزان سقوط افراد افزایش می­یابد. تجزیه و تحلیل الگوهای زمانی سینرژی عضلات می­ تواند چارچوب مفیدی را برای توصیف و تفسیر سازگاری سیستم عصبی - عضلانی فراهم آورد. لذا هدف از پژوهش حاضر، بررسی تأثیر تمرین مقاومتی ناپایدار همراه با محدودیت جریان خون بر الگوهای زمانی و تعداد سینرژی عضلانی سالمندان با سابقه افتادن درحین راه رفتن بود.
مواد و روش ­ها: 27 مرد سالمند (1.5±62 سال) با سابقه افتادن به صورت تصادفی در سه گروه تمرین مقاومتی ناپایدار بدون محدودیت جریان خون، تمرین مقاومتی ناپایدار با محدودیت جریان خون و کنترل قرار گرفتند. برنامه تمرینی شامل 4 هفته و هر هفته سه جلسه تمرین اسکات با وزن بدن روی سطح ناپایدار بود. قبل و بعد از مداخله، سیگنال­ های الکترومیوگرافی از هشت عضله اندام تحتانی در حین راه رفتن برای استخراج تعداد سینرژی، میزان به­ کارگیری عضلات، مدت زمان به­ کارگیری عضلات و ثبات و پایداری فرمان­ های عصبی ثبت گردید. برای تحلیل داده ­ها از آزمون کروسکال-والیس، آزمون جفت شده ویلکاکسون و تحلیل کوواریانس با آزمون تعقیبی بونفرونی استفاده شد (0.05>P < span lang="FA">).
یافته­ ها: نتایج نشان داد که اگرچه در تعداد سینرژی عضلانی بین گروه کنترل با گروه تمرین مقاومتی روی سطح ناپایدار با محدودیت جریان خون (0.002=P < span lang="FA">) و بدون محدودیت جریان خون (0.013=P < span lang="FA">) تفاوت معنادار آماری وجود دارد؛ ولیکن بین دو گروه تمرینی تفاوت معنی­دار آماری مشاهده نشد (0.23=P < span lang="FA">). هم­چنین میزان به­ کارگیری عضلات و مدت زمان به­ کارگیری عضلات در هر دو گروه تمرین با محدودیت جریان خون (0.0001=P < span lang="FA">) و بدون محدودیت جریان خون (0.0001=P < span lang="FA">) کاهش یافته است. تفاوت معنی­ دار آماری تنها در متغیر پایداری فرمان­ های عصبی بین دو گروه تمرین با و بدون محدودیت جریان خون  مشاهده شد (0.005=P < span lang="FA">).
بحث و نتیجه­ گیری: تمرینات مقاومتی ناپایدار همراه با محدودیت جریان خون تنها منجر به بهبود شاخص پایداری فرمان­ های عصبی حین راه رفتن نسبت به تمرینات مقاومتی ناپایدار بدون محدودیت جریان خون در افراد مسن با سابقه افتادن می­ گردد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of resistance training on an unstable surface with blood flow restriction on the temporal patterns and the number of muscle synergies in the elderly with a history of falling while walking: a preliminary study

نویسندگان [English]

  • arezou mehranian 1
  • behrooz abdoli 1
  • ali Maleki 2
  • hamid Rajabi 3
1
2
3
چکیده [English]

Introduction and purpose: as getting old, neuromuscular adaptations decrease and the fall rates increase. Analyzing the temporal patterns of muscle synergy can provide a useful framework for describing and interpreting neuromuscular system’s adaptation. Therefore, the aim of the present study was to investigate the effect of unstable resistance training with blood flow restriction on the temporal patterns and the number of muscle synergies of elderly with a history of falling while walking.
Materials and Methods: 27 elderly men (62±1.5 years old) with a history of falling were randomly assigned into three groups of unstable resistance training without blood flow restriction, unstable resistance training with blood flow restriction and control. The training program consisted of squat training with body weight on unstable surface for 4 weeks and three sessions per week. Before and after the intervention, electromyography signals from eight muscles of the lower limb were recorded during walking to extract the number of synergies, the amount of muscle use, the duration of muscle use, and the stability of neural commands. Kruskal-Wallis test, Paired Wilcoxon test and analysis of covariance test with Bonferroni post hoc test were used (P˂0/05).
Results: Results showed that although there is significant difference in the number of muscle synergy between the control group and the resistance training group on the unstable surface with blood flow restriction (p=0.002) and without blood flow restriction (p=0.013); But no statistically significant difference was observed between the two training groups (P=0.23). Also, the amount of muscles use and duration of muscles use decreased in both training groups with blood flow restriction (P=0.0001) and without blood flow restriction (P=0.0001). However, statistically significant difference was observed only in the stability variable of neural commands between both training groups with and without blood flow restriction (P=0.005).
Discussion and Conclusion: Unstable resistance training with blood flow restriction only improves the stability index of neural commands during walking compared to unstable resistance training without blood flow restriction in elderly people with falls’ history.

کلیدواژه‌ها [English]

  • Walking
  • muscle synergy
  • Time indicators
  • blood flow restriction
1. Ventura JD, Klute GK, Neptune RR. Individual muscle contributions to circular turning mechanics. Journal of Biomechanics. 2015;48(6):1067-74. 2. Bizzi E, Cheung VC, d'Avella A, Saltiel P, Tresch MJBrr. Combining modules for movement. 2008;57(1):125-33. 3. Santos PD, Vaz JR, Correia PF, Valamatos MJ, Veloso AP, Pezarat-Correia PJJoFM, et al. Muscle Synergies Reliability in the Power Clean Exercise. 2020;5(4):75. 4. Maclellan MJ, Ivanenko YP, Massaad F, Bruijn SM, Duysens J, Lacquaniti F. Muscle activation patterns are bilaterally linked during split-belt treadmill walking in humans. Journal of neurophysiology. 2014;111(8):1541-52. 5. Allen JL, Franz JRJJoN. The motor repertoire of older adult fallers may constrain their response to balance perturbations. 2018;120(5):2368-78. 6. Safavynia S, Torres-Oviedo G, Ting LJTiscir. Muscle synergies: implications for clinical evaluation and rehabilitation of movement. 2011;17(1):16-24. 7. Toda H, Nagano A, Luo ZJJopts. Age-related differences in muscle control of the lower extremity for support and propulsion during walking. 2016;28(3):794-801. 8. Goble DJNBR. coxon JP, Wenderoth N, Van Impe a, swinnen sP (2009) Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes.33:271-8. 9. Sawers A, Pai YC, Bhatt T, Ting LH. Neuromuscular responses differ between slip-induced falls and recoveries in older adults. Journal of neurophysiology. 2017;117(2):509-22. 10. Behm DG, Colado Sanchez JCJSh. Instability resistance training across the exercise continuum. 2013;5(6):500-3. 11. Kraemer WJ, Ratamess NA. Fundamentals of resistance training: progression and exercise prescription. Medicine & science in sports & exercise. 2004;36(4):674-88. 12. durch Krafttraining NA. Neuronal adaptations to strength training. Deutsche zeitschrift für sportmedizin. 2007;58(2). 13. Hammett JB, Hey WT. Neuromuscular adaptation to short-term (4 weeks) ballistic training in trained high school athletes. Journal of strength and conditioning research. 2003;17(3):556-60. 14. Shim JK, Hsu J, Karol S, Hurley BFJMC. Strength training increases training-specific multifinger coordination in humans. 2008;12(4):311-29. 15. Behm D, Colado JC. The effectiveness of resistance training using unstable surfaces and devices for rehabilitation. International journal of sports physical therapy. 2012;7(2):226. 16. Behm DG. Neuromuscular implications and applications of resistance training. Journal of Strength and Conditioning Research. 1995;9:264-74. 17. Crisafulli A, de Farias RR, Farinatti P, Lopes KG, Milia R, Sainas G, et al. Blood flow restriction training reduces blood pressure during exercise without affecting metaboreflex activity. Frontiers in physiology. 2018;9:1736. 18. Næss-Schmidt ET, Morthorst M, Pedersen AR, Nielsen JF, Stubbs PW. Corticospinal excitability changes following blood flow restriction training of the tibialis anterior: a preliminary study. Heliyon. 2017;3(1):e00217. 19. Contessa P, De Luca CJ, Kline JC. The compensatory interaction between motor unit firing behavior and muscle force during fatigue. Journal of neurophysiology. 2016;116(4):1579-85. 20. Yasuda T, Fukumura K, Tomaru T, Nakajima TJO. Thigh muscle size and vascular function after blood flow-restricted elastic band training in older women. 2016;7(23):33595. 21. Park S-Y, Kwak YS, Harveson A, Weavil JC, Seo KEJTKJoP, Society POJotKP, et al. Low intensity resistance exercise training with blood flow restriction: insight into cardiovascular function, and skeletal muscle hypertrophy in humans. 2015;19(3):191. 22. Hughes L, Paton B, Rosenblatt B, Gissane C, Patterson SD. Blood flow restriction training in clinical musculoskeletal rehabilitation: a systematic review and meta-analysis. British journal of sports medicine. 2017;51(13):1003-11. 23. Centner C, Zdzieblik D, Roberts L, Gollhofer A, König D. Effects of Blood Flow Restriction Training with Protein Supplementation on Muscle Mass And Strength in Older Men. Journal of sports science & medicine. 2019;18(3):471-8. 24. Clarkson MJ, Conway L, Warmington SA. Blood flow restriction walking and physical function in older adults: A randomized control trial. Journal of science and medicine in sport. 2017;20(12):1041-6. 25. Plaza-Florido A, Migueles JH, Piepoli A, Molina-Garcia P, Rodriguez-Ayllon M, Cadenas-Sanchez C, et al. Blood Flow-Restricted Training in Older Adults: A Narrative Review. Journal of Science in Sport and Exercise. 2020;2(1):25-37. 26. Makizako H, Furuna T, Ihira H, Shimada H. Age-related Differences in the Influence of Cognitive Task Performance on Postural Control Under Unstable Balance Conditions. International Journal of Gerontology. 2013;7(4):199-204. 27. Patterson SD, Ferguson RA. Enhancing strength and postocclusive calf blood flow in older people with training with blood-flow restriction. Journal of aging and physical activity. 2011;19(3):201-13. 28. Shimizu R, Hotta K, Yamamoto S, Matsumoto T, Kamiya K, Kato M, et al. Low-intensity resistance training with blood flow restriction improves vascular endothelial function and peripheral blood circulation in healthy elderly people. European journal of applied physiology. 2016;116(4):749-57. 29. Yasuda T, Fukumura K, Uchida Y, Koshi H, Iida H, Masamune K, et al. Effects of Low-Load, Elastic Band Resistance Training Combined With Blood Flow Restriction on Muscle Size and Arterial Stiffness in Older Adults. The journals of gerontology Series A, Biological sciences and medical sciences. 2015;70(8):950-8. 30. de Castro FMP, Alves GF, Oliveira LP, Tourinho Filho H, Puggina EF. Strength training with intermittent blood flow restriction improved strength without changes in neural aspects on quadriceps muscle. Science & Sports. 2019;34(3):e175-e85. 31. Pinto RS, Correa CS, Radaelli R, Cadore EL, Brown LE, Bottaro M. Short-term strength training improves muscle quality and functional capacity of elderly women. Age (Dordrecht, Netherlands). 2014;36(1):365-72. 32. Libardi CA, Chacon-Mikahil MP, Cavaglieri CR, Tricoli V, Roschel H, Vechin FC, et al. Effect of concurrent training with blood flow restriction in the elderly. International journal of sports medicine. 2015;36(5):395-9. 33. Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. Journal of electromyography and kinesiology : official journal of the International Society of Electrophysiological Kinesiology. 2000;10(5):361-74. 34. Behm DG. Neuromuscular implications and applications of resistance training. Journal of Strength and Conditioning Research. 1995;9(4):264-74. 35. McBride JM, Cormie P, Deane R. Isometric squat force output and muscle activity in stable and unstable conditions. Journal of Strength and Conditioning Research. 2006;20(4):915. 36. Santuz A, Ekizos A, Eckardt N, Kibele A, Arampatzis AJSr. Challenging human locomotion: stability and modular organisation in unsteady conditions. 2018;8(1):1-13. 37. Oliveira AS, Silva PB, Lund ME, Farina D, Kersting UG. Balance Training Enhances Motor Coordination During a Perturbed Sidestep Cutting Task. The Journal of orthopaedic and sports physical therapy. 2017;47(11):853-62. 38. Eckardt N. Lower-extremity resistance training on unstable surfaces improves proxies of muscle strength, power and balance in healthy older adults: a randomised control trial. BMC Geriatrics. 2016;16(1):191. 39. Granacher U, Lacroix A, Muehlbauer T, Roettger K, Gollhofer A. Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults. Gerontology. 2013;59(2):105-13. 40. Seo B-D, Yun YD, Kim H-R, Lee S-h. Effect of 12-week Swiss Ball Exercise Program on Physical Fitness and Balance Ability of Elderly Women. Journal of Physical Therapy Science. 2012;24:11-5. 41. Yasuda T, Fukumura K, Uchida Y, Koshi H, Iida H, Masamune K, et al. Effects of low-load, elastic band resistance training combined with blood flow restriction on muscle size and arterial stiffness in older adults. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2015;70(8):950-8. 42. Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M, et al. Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. Journal of applied physiology (Bethesda, Md : 1985). 2009;106(4):1119-24. 43. Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. European journal of applied physiology. 2002;86(4):308-14. 44. Tanimoto M, Madarame H, Ishii N. Muscle oxygenation and plasma growth hormone concentration during and after resistance exercise: Comparison between “KAATSU” and other types of regimen. International Journal of KAATSU Training Research. 2005;1(2):51-6. 45. Burgomaster KA, Moore DR, Schofield LM, Phillips SM, Sale DG, Gibala MJ. Resistance training with vascular occlusion: metabolic adaptations in human muscle. Medicine and science in sports and exercise. 2003;35(7):1203-8. 46. Deak F, Sonntag WE. Aging, Synaptic Dysfunction, and Insulin-Like Growth Factor (IGF)-1. The Journals of Gerontology: Series A. 2012;67A(6):611-25. 47. Dyer AH, Vahdatpour C, Sanfeliu A, Tropea D. The role of Insulin-Like Growth Factor 1 (IGF-1) in brain development, maturation and neuroplasticity. Neuroscience. 2016;325:89-99. 48. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nature medicine. 2003;9(6):669-76.